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Background: Little is known about how global signaling network properties influence cardiac myocyte hypertrophy.
Results:New 106 species computational model exhibited enriched cross-talk motifs and modular organization, predicting Ras
as the most influential hub.
Conclusion:Multiple levels of network organization modulate hypertrophic outcomes.
Significance: Rather than acting through isolated pathways, cardiac hypertrophy signaling is a highly integrated network.

Cardiac hypertrophy is managed by a dense web of signaling
pathways with many pathways influencing myocyte growth. A
quantitative understanding of the contributions of individual
pathways and their interactions is needed to better understand
hypertrophy signaling and to develop more effective therapies
for heart failure. We developed a computational model of the
cardiac myocyte hypertrophy signaling network to determine
how the components and network topology lead to differential
regulation of transcription factors, gene expression, and myo-
cyte size. Our computational model of the hypertrophy signal-
ing network contains 106 species and 193 reactions, integrating
14 establishedpathways regulating cardiacmyocyte growth. 109
of 114 model predictions were validated using published exper-
imental data testing the effects of receptor activation on tran-
scription factors and myocyte phenotypic outputs. Network
motif analysis revealed an enrichment of bifan and biparallel
cross-talk motifs. Sensitivity analysis was used to inform clus-
tering of the network into modules and to identify species with
the greatest effects on cell growth. Many species influenced
hypertrophy, but only a few nodes had large positive or negative
influences. Ras, a network hub, had the greatest effect on cell
area and influenced more species than any other protein in the
network.We validated thismodel prediction in cultured cardiac
myocytes. With this integrative computational model, we iden-
tified the most influential species in the cardiac hypertrophy
signaling network and demonstrate how different levels of net-
work organization affect myocyte size, transcription factors,
and gene expression.

Cardiac hypertrophy develops in response to biochemical
and mechanical stresses, increasing patient risk of heart fail-
ure and malignant arrhythmia (1). The cardiac hypertrophy
response is managed by a dense web of signaling pathways

with many species influencing cardiac myocyte growth (2).
The complexity of this network has hindered the develop-
ment of successful therapeutic strategies (3) and indicates
the need for integrative systems approaches which can pro-
vide a global view of functional relationships in the network
(4).
Computational models have been used to increase under-

standing of the role of signaling components and topology
on cardiac physiology such as myocyte contractility (5),
arrhythmia (6), and hypertrophy (7, 8). Although these mod-
els have been used successfully to address focused questions
about individual pathways, more global network reconstruc-
tions are needed to understand differential regulation of
hypertrophy and crosstalk between these pathways. Large-
scale integrative models have been successful in other sys-
tems such as the prediction of optimal evolution (9) and drug
targets (10) in metabolic networks and prediction of the
global transcriptional response to genetic and environmen-
tal perturbations (11).
Here, we developed a computational model of the hyper-

trophy signaling network by integrating many established
pathways implicated in cardiac myocyte growth. We used
the recently described normalized Hill modeling framework
(12) with default parameters, which allowed us to build a
more complete network despite limited available quantita-
tive biochemical data. We used this model to determine how
the components and network topology of hypertrophy sig-
naling lead to differential regulation of transcription factors,
gene expression, and myocyte size. Model predictions were
validated using published and new experimental data testing
the effects of receptor activation on transcription factors and
myocyte phenotypic outputs. Using this model, we analyzed
network motifs, dynamics, and modules to increase under-
standing of network organization and performed sensitivity
analysis to identify global functional relationships in the net-
work. Key findings include identification of Ras as an influ-
ential network hub, enrichment of network motifs causing
cross-talk, andmany nodes that influencemyocyte hypertro-
phy, but only a few nodes with large positive or negative
effects on cell growth.
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EXPERIMENTAL PROCEDURES

Modeling Approach—Network reconstruction of cardiac
hypertrophy signaling focused on the most established path-
ways leading from receptor inputs to transcription factor activ-
ities, gene expression, and myocyte size. Each reaction was
substantiated with at least two citations from the literature,
with a preference for data from neonatal rat ventricular myo-
cytes (see supplemental Table 1). The overall cardiac hyper-
trophy signaling network model contains 106 species and
193 reactions (Fig. 1). The model contains 17 receptor inputs
(tumor necrosis factor � (TNF�), isoproterenol, norepi-
nephrine; phenylephrine (PE);3 endothelin-1, insulin-like
growth factor, epidermal growth factor (EGF); angiotensin
II, neuregulin 1, transforming growth factor � (TGF�); inter-
leukin 6 (IL6); fibroblast growth factor, FGF; cardiotrophin
1; leukemia inhibitory factor (LIF); stretch, brain naturetic
peptide; atrial naturetic peptide) and seven phenotypic out-
puts (cell area and expression of six genes: sarcoplasmic
reticulum ATPase, �-myosin heavy chain, �-myosin heavy
chain, atrial naturetic peptide, brain naturetic peptide, and

skeletal �-actin). The size of the model allowed for investi-
gation of differential regulation of hypertrophy and cross-
talk between pathways.
Species dynamics were predicted by converting the network

to mathematical equations using the recently described nor-
malized-Hill differential equation approach (12). Briefly, this
modeling approach uses logic-based differential equations, rep-
resenting activation or inhibition reactions using normalized
Hill functions together with logical AND andOR gates to com-
pute crosstalk. Each species has a corresponding differential
equation, which is computed in units of fractional activation so
that protein abundance parameters are not required. For exam-
ple, the joint activation of protein kinase C (PKC) by calcium
(Ca) and diacylglycerol (DAG) is represented by the following
equations.

dPKC

dt
�

1

�� B � Can

Kn � Can �
B � DAGn

K n � DAGn � PKCmax � PKC�
(Eq. 1)

B �
EC50

n � 1

2EC50
n � 1

(Eq. 2)3 The abbreviations used are: PE, phenylephrine; FGF, fibroblast growth fac-
tor; LIF, leukemia inhibitory factor.

FIGURE 1. Schematic of the cardiac hypertrophy signaling network model. The model consists of 106 species and 193 reactions. Model inputs and outputs
are shown in gray. This model was implemented using the normalized-Hill differential equation modeling approach (12) using 132 literature citations focused
on neonatal rat ventricular myocytes (see supplemental Table 1). ISO, isoproterenol; NE, norepinephrine; ET1, endothelin-1; IGF1, insulin-like growth factor;
AngII, angiotensin II; NRG1, neuregulin 1; IL6, interleukin 6; FGF, fibroblast growth factor; CT1, cardiotrophin 1; BNP, brain naturetic peptide; ANP, atrial naturetic
peptide; SERCA, sarcoplasmic reticulum ATPase; �-MHC, �-myosin heavy chain; sACT, skeletal �-actin; CREB, cAMP-responsive element-binding protein; EGFR,
EGF receptor; FGFR, FGF receptor; IP3, inositol 1,4,5-trisphosphate; �AR, �-adrenergic receptor. �-AR, alpha-adrenergic receptor; NOS, nitric oxide synthase; NIK,
NFKB-inducing kinase; AC, adenylyl cyclase; DAG, diacylglycerol; PLC, phospholipase C; FAK, focal adhesion kinase; SRF, serum response factor; GCA, guanylyl
cyclase subtype A.
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K � �B � 1�
1

n (Eq. 3)

An example of an OR gate is seen in the activation of JNK by
MEK4 or MEK7.

dJNK

dt
�

1

��� B � MEK4n

K n � MEK4n �
B � MEK7n

K n � MEK7n � � B � MEK4n

K n � MEK4n �

B � MEK7n

K n � MEK7n�� � JNKmax � JNK� (Eq. 4)

Default parameters (specified in supplemental Table 1,
weight � 1, n � 1.4, Tau � 1, and EC50 � 0.5) were used for all
reactions based on a prior normalized Hill model of the cardiac
�-adrenergic pathway (12). Matlab code for the 106 differential
equations was generated automatically from Supplemental
Table 1 usingNetflux (freely available online). TheMatlab code
for the model is available in the supplemental material. Initial
values for each species were 0 or 1 and are listed in supplemen-
tal Table 1. The normalized Hill framework allows predictions
of network dynamics and is compatible with many analyses
from the field of nonlinear dynamics while requiring minimal
knowledge of biochemical parameters. Notably, the kinetics of
this model can be refined as experimental data become avail-
able (12).
Analysis of Network Topology—The hypertrophy signaling

network was exported from Netflux into Cytoscape (13) for
topological analysis. The Network Analyzer (14) plug-in was
used to calculate topological properties of the network such as
the mean number of neighbors and the characteristic path
length from input to output (Table 1). The NetMatch (15)
plug-in was used to identify enriched network motifs. Motifs
are biologically significant network structures that form the
building blocks of a complex system, often facilitating regula-
tion, stability, and cross-talk (16). To identify statistically
enriched network motifs, the hypertrophy signaling network
was comparedwith a set of ten randomizedmodelswith a scale-
free degree distribution. These randomized models were cre-
ated using the RandomNetworks plug-in. Comparisons were
performed for five different motifs: three-node feed-forward
loops, bi-parallels, four-node feed-forward loops, bi-fans, and
three-node feedback loops. The z-score for each comparison
was calculated using the equation: Z � (Nhyp � Nrand)/Srand.
Nhyp is the number of a particular motif in the hypertrophy
network, Nrand is the average number of that motif in the ran-
domized scale free networks, and Srand is the S.D.
Sensitivity Analysis and Identification of Network Modules—

A sensitivity analysis was performed by simulating individual
knockdowns for each of the 106 species in the network and then
measuring the activation of all species in the network at steady
state. Knockdowns were generated by setting the maximal
activity for a given species to zero (e.g.PKCmax� 0). All 17 input
reactions were set to a weight of 0.072 such that cell area was
close to 0.5,maximizing the information that could be obtained
from sensitivity analysis. This is based on the experimental
observation that unstimulated neonatal myocytes are roughly
half the size of myocytes stimulated with a strong hypertrophic
agonist (17). Results were combined as a 106 � 106 sensitivity

matrix defined as: Si,j � �Yj/�Pj, where Si,j is the sensitivity of
species i to knockdown of species j, �Yi is the change in steady-
state output of species i (control knockdown), and �Pj � 1,
when species j is being knocked down.
To determine which species in the network have similar

functions, kmeans clusteringwas applied after thresholding the
sensitivity matrix. This threshold was applied at a sensitivity
level of 0.001, where sensitivities above the threshold were set
to 1 and all values below the negative of the threshold were set
to �1. All other values were set to zero. In Cytoscape, species
could be collapsed into their modules using the plug-inMetan-
odes, providing amap of how themodules were interconnected
with each other.
Cell Culture and Microscopy—Cardiac myocytes were har-

vested from 1–2-day-old Sprague-Dawley rats after decapita-
tion and transfected with GFP driven under a cardiac myocyte
specific troponin T promoter (18) (transfection efficiency:
10–15%) 2 days after isolation. All procedures were performed
in accordance with the Guide for the Care and Use of Labora-
tory Animals published by the U. S. National Institutes of
Health and approved by the University of Virginia Institutional
Animal Care and Use Committee. Two days after transfection,
myocytes were imaged and then rinsed and transferred to a
solution of 100 �mol/liter Ras inhibitor (farnesyltransferase
inhibitor, FPT inhibitor III), 100 �mol/liter JNK inhibitor
(SP600125), 10 �mol/liter p38 inhibitor (SB203580), or 10
�mol/liter of MEK1/2 (U0126) inhibitor (Calbiochem, La Jolla,
CA) in serum-free medium. U0126 has also been shown to
inhibit MEK5 (19). For 48-h PE treatment experiments, a more
specific MEK 1/2 inhibitor (100 nmol/liter PD325901) was
used, and a lower concentration of JNK inhibitor (10 �mol/
liter), because higher concentrations significantly affected cell
size even without PE treatment. After 1 h, the myocytes were
transferred to a solution of 10 �mol/liter PE, an �-adrenergic
receptor agonist, with a given inhibitor. Follow-up images were
recorded after 24 or 48 h. In each well of interest in the 96-well
plate, a 5 � 5 grid of images was collected automatically using
custom image acquisition scripts (20). Changes inmyocyte area
were evaluated using automated custom Matlab algorithms
(20). More detailed methods are included in the supplemental
material.

RESULTS

Topology of the Hypertrophy Signaling Network—The con-
struction of a cardiac hypertrophy signaling network model
creates an opportunity to examine how global network proper-
ties influence the development of hypertrophy. Previous stud-
ies have primarily examined effects of a single species or path-
way using biochemically detailed mass action or Michaelis
kinetics. Here, we used the recently described normalized Hill
modeling framework (12) with default parameters, which
allowed us to model a more integrative signaling network
despite limited available quantitative biochemical characteriza-
tion at this scale. Comprehensive sensitivity analysis comparing
a previously built mass action model of �-adrenergic signaling
with detailed parameters with a normalized Hill model with
default parameters showedhigh agreement, with a Pearson cor-
relation coefficient of 0.754 (12). Key reasons for the parameter
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robustness are the normalization of equations in terms of frac-
tional activation and the separation of steady state (e.g. reaction
weights) and kinetic (time constants) parameters.
Topological properties of the overall network are summa-

rized in Table 1. Species with a small number of neighbors and
species with many neighbors are overrepresented compared
with a network with normally distributed linkages (supplemen-
tal Fig. 1). Eight nodes with an especially high number of neigh-
bors (�8), “hubs” (21), were identified (Table 1). Because hubs
participate in a large number of reactions in the network, they
may be influential across several parallel pathways in the hyper-
trophy network.
Network motif analysis revealed the presence of feed-for-

ward loop, bi-fan, and bi-parallelmotifs in the hypertrophy net-
work. Although a high level of cross-talk was expected based on
the network diagram, the specific types of interaction motifs
present and their significance comparedwith other networks of
the same size was not known. The structure of each identified
motif, two examples from the hypertrophy network, and quan-
titative comparisons to the randomizednetworkswith the same
number of species and interactions are shown in Table 2. Feed-
forward loops indicate cross-talk between species in parallel
pathways and influence reaction speed. Feed-forward loops in
the hypertrophy network were primarily longer path four-node
loops instead of three-node loops. Three-node feed-forward
loops were present but underrepresented in the hypertrophy
network compared with randomized scale-free networks. Bi-
parallel motifs were overrepresented in the network, whereas
other types of four-node feed-forward loopswere absent. Bi-fan
motifs were highly overrepresented in the hypertrophy net-
work compared with the randomized scale-free networks, indi-
cating a high level of cross-talk between pathways in the hyper-
trophy signaling network.
Simulation and Experimental Validation of Network

Dynamics—The normalized Hill differential equation frame-
work of the hypertrophy signaling network model enables net-
work-wide prediction of signaling dynamics. Fig. 2 shows an
example simulation of the response to a transient exposure to
phenylephrine (PE) followed by TNF�. Different patterns of
activation between the two hypertrophic agonists can be clearly
observed as well as groups of network species with similar pat-

terns of activation. For example, members of the Ras/MAPK
pathway are activated with PE and not TNF�, whereas PI3K is
activated by both agonists. Moreover, similar patterns of acti-
vation can be seen in small GTPases Rac1, Raf1A, Ras, and
RhoA as well as members of the MAPK pathway MEK12,
MEK4, and MEK7. Visualization of activity dynamics for the
entire network is shown in supplemental Video 1. This visual-
ization highlights the ability to examine the influence of net-
work topology on signaling dynamics. Although the current
model uses default time constants for all reactions, these
parameters can be readily revised as kinetic experimental data
become available (12).
The model was validated using independent data from the

experimental literature testing the effects of each model input
on the phenotypic outputs (Fig. 3). Experimental sources are
listed in supplemental Table 2.Model datawere binned into the
categories of positive, negative, and no effect at steady state due
to limits in the resolution of the available experimental data.
The hypertrophymodel was able to correctly predict 109 of 114
(96%) qualitative input-output relationships observed experi-
mentally in neonatal ventricularmyocytes. A notable exception
is the model prediction that insulin-like growth factor

TABLE 1
Topological properties of the cardiac hypertrophy signaling network
The number of neighbors is equivalent to the total number of reactions that go in or
out of a given species. Characteristic path length is the average number of nodes
between two species in the network. BNP, brain naturetic peptide; ANP, atrial
naturetic peptide; SERCA, sarcoplasmic reticulum ATPase; �-MHC, �-myosin
heavy chain; CREB, cAMP-responsive element-binding protein; ISO, isoproterenol;
NE, norepinephrine.

Number of species 106
Number of reactions 193
Avg. number of Neighbors 3.508
Characteristic path length 4.936
Hubs (8� neighbors) Ras, p38, cJun, NFAT, MEF2, ERK12,

GATA4, PI3K
Inputs Angiotensin II, ANP, BNP, CT1, EGF,

ET1, FGF, IGF1, IL6, ISO, LIF, NE,
NRG1, PE, stretch, TGF�, TNF�

Transcription factors ATF2, cFos, cJun, CREB, FOXO,
GATA4, MEF2, NFAT, SRF

Outputs �-MHC, ANP, �-MHC, BNP, cell
area, skeletal actin, SERCA

TABLE 2
Enriched network motifs in the hypertrophy signaling network
Motif analysis revealed feed-forward loop, bi-fan, and bi-parallel network motifs in
the cardiac hypertrophy network. The structure of each motif is shown along with
two specific examples present in the network. The prevalence of these motifs was
compared to the average of ten randomized scale-freemodels.Nhyp is the number of
motifs in the hypertrophy network, andNrand is the average number of motifs in the
randomized networks. The z-score comparing prevalence in the hypertrophy and
the randomized models is also shown. Bi-fan motifs were largely prevalent in this
network, whereas feed-forward loops were underrepresented compared to the ran-
domized models.
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increased atrial naturetic peptide gene expression, which is the
opposite of experimental observations (22). Experimental data
were found for only 48% of these input-output relationships,
indicating substantial gaps in the literature. Model discrepan-
cies with experimental data such as this will help informmodel
revision and experimental design.
Sensitivity Analysis of Myocyte Hypertrophy—Sensitivity

analysis provides a global view of quantitative functional rela-
tionships between every species in the hypertrophy signaling
network. Fig. 4 shows the sensitivity analysis for a subset of the
network, whereas the full 106 � 106 species sensitivity matrix
for the entire network is available in the supplemental data
(supplemental Fig. 2). Each column of the matrix shows the
change in activity of each species in the model when a given

species is knocked down. Therefore, the diagonal of the matrix
represents self-activation, which varies between species as a
result of differences in base-line activity.
Sensitivity analysis revealed quantitative relationships in the

hypertrophy signaling network that would not be apparent
from observation of the network topology alone. By examining
a particular row of the sensitivity matrix, one can see what spe-
cies most strongly influence a particular species. For example,
atrial naturetic peptide gene expression (row2) ismore strongly
influenced by Ras than JAK and more strongly influenced by
JAK than JNK, even though each of these species is in the same
pathway.
By examining the columns of the sensitivitymatrix the global

influences of every species in the network can be compared. For

FIGURE 2. Predicting global dynamics of the hypertrophy signaling network. Predicted activation time course for a subset of species (47/106) in the cardiac
hypertrophy signaling network model comparing perturbations by PE and TNF� to show how different ligands induce different dynamic network responses.
PE was removed to restore the original system steady state before adding TNF�. BNP, brain naturetic peptide; ANP, atrial naturetic peptide; SERCA, sarcoplasmic
reticulum ATPase; �-MHC, �-myosin heavy chain; sACT, skeletal �-actin; CREB, cAMP-responsive element-binding protein; IP3, inositol 1,4,
5-trisphosphate; �AR, �-adrenergic receptor. NIK, NFKB-inducing kinase; SRF, serum response factor; PKD, protein kinase D.
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example, GSK3� (column 14) has a greater inhibitory role in
the network compared with other species and may represent a
potential therapeutic target for overexpression/activation. Fig.
4 also shows that Ras has a greater relative influence on species
in the network compared with other species such as G�	.
Moreover, species further upstream in the network such as
G�q11 and gp130LIFR tend to affect more species in the net-
work than species further downstream such asATF2 and ELK1.
Interestingly, whereas Ras affects a large number of species in
the network, Ras is not significantly affected bymany species in
the network. Because Ras has 14 direct connections to other
species in the network, including eight activating species, Ras
can retain a high level of activation despite reduced levels of a
single upstream species. Although we hypothesized strong cor-
relations between the number of connections with other spe-
cies in the network and sensitivity and influence (21, 23), sen-
sitivity analysis revealed only moderate correlations between
local connectivity and global network influence and sensitivity
in the hypertrophy network (supplemental Fig. 3). Notable
exceptions to the expected connectivity/function correlation
included a substantial influence of endothelin-1 despite
direct links only to its receptor endothelin-1R, and a high

sensitivity of NF
B despite being directly regulated only by
I
B and ERK1/2.

The row of the sensitivity matrix corresponding to cell area
(row 6) highlights species withmajor influences on cell growth.
Ras, JAK, G�	, G�q11, and gp130LIFR have the highest influ-
ences on cell area in the network. The single species with the
greatest influence on cell area, Ras, is also a hub, with 14 con-
nections to other species in the network. GSK3� negatively
influences cell area. A network view of the relative influence on
cell area of each species is shown in supplemental Fig. 4. This
diagram shows highly influential species at various locations in
the network, not just near the outputs. With these results, we
rank ordered the species in the network based on their degree of
influence on cell area from least to greatest (supplemental Fig.
5A). This information will be useful for prioritizing future
experiments and potential drug targets. Compared with a nor-
mal distribution, species with low positive influences are over-
represented, species with negative influences are underrepre-
sented, and Ras, JAK, and G�	 havemuch higher influences on
cell area than expected (supplemental Fig. 5B). To ensure that
the model was not highly sensitive to our choice of default
parameter values, we examined the correlation coefficients
between the model with default parameter and models with
choices of EC50, n, weight, and Tau based on a uniform proba-
bility distribution within a given range (supplemental Fig. 6).

FIGURE 3. Experimental validation of model predictions from receptor
activation to transcription factors and phenotypic outputs. Red indicates
increase, blue indicates decrease, white indicates no change, and gray indi-
cates an absence of available data. The cardiac hypertrophy model accurately
predicted the large majority of qualitative input-output relationships of the
hypertrophy network (109 of 114 relationships, sources provided in supple-
mental Table 2). Discrepancies between the model and experimental results
are boxed. BNP, brain naturetic peptide; ANP, atrial naturetic peptide; SERCA,
sarcoplasmic reticulum ATPase; �-MHC, �-myosin heavy chain; sACT, skeletal
�-actin; CREB, cAMP-responsive element-binding protein; �AR, �-adrenergic
receptor.

FIGURE 4. Sensitivity analysis reveals global functional relationships of
the hypertrophy signaling network. A subset of the full sensitivity matrix
for the cardiac hypertrophy signaling network model is shown. Each column
of the sensitivity matrix represents a computational experiment in which the
labeled species was knocked down, and then the activity of each species in
the model was measured at steady state. Sensitivity values indicate change in
steady-state output (control, knockdown). Therefore, red signifies that the
species in the column activates the species in the row, whereas blue signifies
inhibition, and white signifies no change. BNP, brain naturetic peptide; ANP,
atrial naturetic peptide; SERCA, sarcoplasmic reticulum ATPase; �-MHC, �-my-
osin heavy chain; sACT, skeletal �-actin; CREB, cAMP-responsive element-
binding protein; �AR, �-adrenergic receptor.
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Sensitivity Analysis Reveals Modular Regulation of Hyper-
trophy—We hypothesized that there may be an underlying
structure to the sensitivity matrix that would help elucidate
functional organization of the hypertrophy signaling network.
Rather than formingmodules based on network structure, cor-
relations in the rows of the sensitivity matrix were automati-
cally sorted by k-means clustering into twelve functional mod-
ules in the hypertrophy network (Fig. 5). A network schematic
labeling the module for each species is shown in supplemental
Fig. 7. Of these, the largest module (receptors) contained every
input and corresponding receptor except for �-adrenergic
receptor. This module also included connected species protein
kinase C, TAK1, protein kinase D, and histone deacetylases
(HDAC). This large module occurred because each of these
species is located “upstream” in the hypertrophy network and
therefore affected by a limited number of other species. The
MAPK species were partitioned into two groups, one con-
sisting of species closely neighboring Ras and one centering
on p38. Species in the downstream module centering on p38
are affected by more species than the upstream module that
included Ras. Species that are predominately inhibited by
other species in the network (sarcoplasmic reticulum
ATPase, �-myosin heavy chain, I
B, FOXO, GSK3�) were
also grouped together. Unique mixture of inhibition and
activation of NFAT by other species in the network resulted
in it being grouped by itself.
The MAPK and PI3K modules contain major network hubs,

suggesting a role of these modules as network integration
points. For example, the PI3K module is centered on a species
with high in-degree (PI3K) and one with high out-degree
(AKT). Other modules represent discernible, linear pathways
such as �-adrenergic receptor, Gq/calcium, and JAK/STAT
modules. Network outputs were organized in three different
modules suggesting differences in regulation and indicating the
ability of the network to generate different hypertrophic phe-
notypic outputs in different signaling states.
The network was sorted into 12 modules because this group

number resulted in moderate sized modules. Expanding the

number of groups beyond twelve resulted inmore small groups
with �4 members. For example, with 15 modules, Gq-calcium
signaling split into three modules and sarcoplasmic reticulum
ATPase and �-myosin heavy chain split from the GSK3� mod-
ule. Reducing the module number below 12 resulted in more
modules joining the large receptors module. For example,
reducing the number of groups to 10 modules resulted in Gs
signaling grouping together with the large receptors module
and skeletal �-actin joining the cell area module.
Connections between modules are labeled (Fig. 5) to charac-

terize interactions between network components. Modules
were on average connected to 5.17 other modules in the net-
work. Motif analysis revealed 22 feed-forward loop, 29 bi-par-
allel, and 21 bi-fan motifs between network modules. These
results indicate a high level of cross-talk between modules and
suggest that studying the interactions between signaling path-
ways will be important in understanding cellular regulation of
cardiac hypertrophy.
Experimental Validation of Distributed Processing by the

Ras/MAPK Pathway—The hypertrophy signaling model
includes eight hubs (Table 1), which are species with at least
eight connections to other species in the network. The sensitiv-
ity analysis revealed that the network hub Ras has the greatest
influence on cell area in the network (Fig. 4). No other network
hubs make up the list of the five most influential network spe-
cies (supplemental Fig. 5A). The second most influential spe-
cies, JAK, only had six direct connections to other species (Fig.
1). Ras has 14 connections to other species in the network, six of
which are downstream. Through distributed processing out of
Ras, the network could continue to generate large increases in
cell area if any single pathway out of Ras was blocked. The
model therefore predicts that blocking Ras would have a larger
effect on cardiac hypertrophy than inhibiting any other down-
stream species alone (Fig. 6, A and B).
To test this model prediction, we stimulated cardiac myo-

cytes with the �-adrenergic receptor agonist PE. The magni-
tude of PE-induced hypertrophy was compared with myocytes
stimulated with both PE and an inhibitor for either Ras, JNK,
MEK1/2, or p38. As predicted by the model, Ras inhibition
almost entirely prevented PE-induced hypertrophy, giving fur-
ther evidence for the role of Ras as a highly influential network
hub in hypertrophy signaling (Fig. 6,C and E).MEK1/2 and p38
inhibition had smaller effects on cell area (Fig. 6, C–E). JNK
inhibition, however, had a greater impact on cell growth than
expected based on model predictions (Fig. 6C).This finding
may suggest a larger role in cell growth than can be predicted by
the currentmodel or reflect limitations in specificity of the JNK
inhibitor (24). Therefore, the relative contribution to hypertro-
phy between MEK1/2, p38, and JNK requires further study.
Data from experiments taken out to 48 h reveal that p38 inhi-
bition and MEK1/2 inhibition did have significant effects on
hypertrophy, but less so than JNK inhibition (Fig. 6D). Ras inhi-
bition combined with PE resulted in cell death at 48 h, so we
could not include data from this condition. Because sus-
tained Ras inhibition with PE led to cell death, Ras may be
important in adaptation to stress for cardiac myocytes. Ras
inhibition with FPT inhibitor III has been shown to increase
apoptosis (25, 26). Inhibitor treatment without PE did not

FIGURE 5. Modular organization of the hypertrophy signaling network
revealed by sensitivity analysis. k-means cluster analysis of the sensitivity
matrix of the cardiac hypertrophy model revealed 12 major functional signal-
ing modules. Labeled connections between modules represent interactions
between species in different modules. sACT, skeletal �-actin. NFAT, nuclear
factor of activated T-cells.
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cause significant (p � .05, Kruskal Wallis test followed by
Dunn’s multiple comparison’s post-test) differences in fold
change in cell area compared with negative control at 24 or
48 h (supplemental Fig. 8).

DISCUSSION

Although previous experiments related to hypertrophy have
focused primarily on small portions of the overall network,
integrated computational models provide an opportunity to
analyze howmultiple pathways interact to affect cardiac hyper-

trophy. Here, we developed a computational model of the
hypertrophy signaling network with 106 species and 193 reac-
tions by integrating 14 established pathways regulating cardiac
myocyte growth. Other models of hypertrophy have been con-
structed to increase understanding of individual pathways in
the network. A previous model of the inositol 1,4,5-trisphos-
phate-calcineurin pathway used sensitivity analysis to show
that differences in receptor kinetics and density explained the
differences in inositol 1,4,5-trisphosphate transients induced
by endothelin-1 and angiotensin II (8). A different model of the

FIGURE 6. Model predictions and experimental validation of distributed processing by the Ras/MAPK pathway. A, schematic of signaling downstream
of Ras labeled with predicted differences in cell area between control and the knockdown of each species in the pathway. Darker species labels indicate a larger
influence on cell area. The model predicts that inhibiting Ras, which has the largest influence on cell area, would have a much larger effect on PE-induced
cardiac hypertrophy than knocking down any individual downstream species. B, model predicted fold change in cell area for PE-induced hypertrophy with Ras,
JNK, MEK1/2, or p38 inhibition. The PE input reaction was set to a weight of 0.25, and all other inputs were turned off. C, median (	500 cells per condition) fold
change in cell area of cultured neonatal rat ventricular myocytes stimulated for 24 h with PE with an inhibitor for either Ras (100 �M FPT inhibitor III), JNK (100
�M SP600125), MEK1/2 (10 �M U0126), or p38 (10 �M SB203580). Error bars are 
 S.E. As predicted, inhibiting Ras almost entirely prevented PE-induced
hypertrophy. Differences in fold change in cell area were tested for statistical significance using Kruskall-Wallis non-parametric one-way analysis of variance
followed by a Dunn’s multiple comparisons post-test. #, p � 0.05, comparison with negative control (PE versus negative (Neg.) control). *, p � .05, comparison
with positive control (Ras, JNK, MEK1/2, and p38 inhibition versus PE). D, median (	700 cells per condition) fold change in cell area of cultured neonatal rat
ventricular myocytes stimulated for 48 h with PE with an inhibitor for JNK (10 �M SP600125), MEK1/2 (100 nM PD325901), or p38 (10 �M SB203580) for 48 h. Ras
inhibition combined with PE resulted in cell death at 48 h, so we could not include data from this condition. E, representative images of segmented cardiac
myocytes after 24 h of treatment with labeled fold change in cell area (scale bar, 10 �m). PE-induced hypertrophy is attenuated by Ras-inhibition more than
MEK1/2 inhibition.
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calcineurin pathway was used to elucidate the role of modula-
tory calcineurin-interacting protein (MCIP) in a negative feed-
back loop in calcineurin/NFAT signaling that requires a large
threshold of NFAT to induceMCIP expression (7). These stud-
ies successfully used systems analysis tools to gain new insights
about the composition of signaling pathways related to hyper-
trophy. We built a more comprehensive model of the larger
network to study how network organization and interactions
between network components affect the differential regulation
of transcription factors, gene expression, and myocyte size.
Networkmotif analysis revealed an enrichment of bi-fan and

bi-parallel motifs, network building blocks that could acceler-
ate the development of hypertrophy and impede its reversal.
Bi-fan motifs indicate a high level of cross-talk and further
motivate the need for integrative systems techniques that
examine the larger network to better understand hypertrophic
signaling. Bi-parallel motifs are a type of four-node feed-for-
ward loop. Feed-forward loops have been shown in mathemat-
ical models and Escherichia coli transcriptional regulation to
accelerate signaling and increase robustness of the network by
delaying output reversal when the upstream signal is removed
(16). This facilitates output stability with the transient loss of an
input (27). These properties can be further tuned by adjusting
parameters in the network such as thresholds and reaction rates
(28). As experimental data become available, reaction parame-
ters of individual motifs can be refined in the hypertrophy sig-
naling network model to study specific feed-forward loops reg-
ulating signaling speed and robustness.
Sensitivity analysis was used to inform clustering of the net-

work into modules. Modularity enhances robustness of the
function of a particular module and distinct connections
between modules enable development of various cell functions
(29). Modules in the hypertrophy network were found to be
highly interconnected with an enrichment of feed-forward, bi-
fan, and bi-parallel motifs. More experimental data are needed
to fully characterize the unique role of each of thesemodules in
hypertrophy.
Sensitivity analysis identified species with the greatest effects

on cell growth. GSK3� was predicted to negatively regulate cell
area, which is consistent with the finding that GSK3� overex-
pression attenuated the hypertrophy response due to calcineu-
rin,�-adrenergic signaling, and pressure overload (30) and par-
tially reversed hypertrophy due to pressure overload (31).
Upstream nodes were in general more influential on the overall
network than downstream nodes, which can also be seen in the
sensitivity analysis for the �-adrenergic signaling network (12).
Ras, a network hub, had the greatest effect on cell area and
greater magnitude effects on more species than any other spe-
cies in the network. The high influence of Ras is consistent with
the correlation of network degree and lethality of single gene
mutations (21) and the stability of scale-free networks to ran-
dom node failures and not to attacks on hubs (23).
We tested our model prediction that attack of the hub Ras

would have a greater effect on cell area than inhibition of less
connected downstream nodes by comparing the level of PE-
induced hypertrophywithRas, JNK,MEK1/2, or p38 inhibitors.
As predicted, the Ras inhibitor had the greatest effect on PE-
induced hypertrophy. Our experimental results demonstrating

reduction in PE induced hypertrophy with inhibition of Ras,
JNK, p38, and MEK1/2 are consistent with data from cultured
neonatal myocytes (32, 33). Increased cell size was seen in neo-
natal rat cardiac myocytes with microinjection of an activated
Ras mutant (34), overactivated JNK by constitutively active
MKK7 (35), overactivated p38 by constitutively active MKK6
(33), and expression of constitutively active MEK1 (36).
Although in vitro experiments show pro-hypertrophic effects
for JNK, MEK1/2, and p38, in vivo experiments have generated
more conflicting results (37). Additional studies are needed to
conclusively show the relative contributions of these ligands to
various cardiac hypertrophy phenotypes in myocytes.
Reactions in this hypertrophy model were selected based on

published data with a preference for experiments using cul-
tured neonatal rat ventricular myocytes. Although neonatal
cells are perhaps less physiologically relevant to cardiac hyper-
trophy compared with adult myocyte or in vivo systems, more
complete experimental data on hypertrophy signaling is avail-
able from neonatal myocytes. This allowed us to build a more
comprehensive signaling network model than would have oth-
erwise been possible. The use of default parameters with equal
weighting of all reactions was necessary for this initial model
becausemany of these parameter values are unknown.Weight-
ing and parameter values can be refined as experimental data
become available. Similarly, this extensible platform allows
newly identified reactions to be added as they are discovered.
Experiment model discrepancies highlight areas where addi-
tional signaling proteins or reactions may be needed to mech-
anistically explain experimental observations. The model may
therefore be a useful tool for experimental design.
In summary, we developed an integrativemodel of the hyper-

trophy signaling network in neonatal ventricular myocytes.
Motif analysis revealed a high level of cross-talk and four-node
feed-forward motifs in the network, and sensitivity analysis
identified themost influential species in hypertrophy andmod-
ular organization of the network. We demonstrated the util-
ity of this approach in studying the functional effects of
multi-scale signaling network organization on cardiac myo-
cyte hypertrophy.
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